Squaring the Circle, No. 9


ochre, opal, spinel, and carbon on paper

47.5 x 31.5 inches


Collaborative painting by Ian Boyden and Timothy C. Ely

Series: Squaring the Circle


One day, I tied several brushes together and made giant ensōs until the entire floor of my studio was completely covered in paper.  I was exuberant; the ground was littered with percolations of the void.  I called my friend Tim Ely, but then I realized that all I could tell him was that I had tied brushes together and had made a bunch of marks.  After these marks dried, I selected about ten of my favorite ensōs and sent them to him—one was not enough. Then, it was Tim's turn to be exuberant. We worked back and forth.  When we were finished, we found that several of them were visual manifestations of the classic mathematical question of squaring the circle (this is a question of producing a square and a circle that have either the same area or the same circumference using only a protractor and straightedge).


For most questions there are processes by which one can arrive at an answer. Typically process is associated with the expectation of resolution.  However, squaring the circle has no resolution.  In fact, the search of its resolution is allied with the patient calculation of π, and the recognition of a class of numbers that are known as transcendental numbers. One of the reasons that I love to paint is that physical marks often shed light on the non-physical.  These are processes that are specifically set up to shed light on the ineffable. The series Squaring the Circle provides an intriguing response to this ancient question.